Maximum Flow Algorithms and Applications I

Alexander Shieh
INFOR, Taipei Chien Kuo High School

Maximum flow algorithms has been my recent research interest after reading some
aspects of this topic in Introduction to Algorithms. These algorithms have a great variety of
applications, including scheduling, demand and allocation problems...etc, mainly solving
combinatorial optimization problems. In recent years it has been used to solve problems in
machine learning and computer vision (which is a field in artificial intelligence that allowed
computers to recognize patterns and identify objects in images). Though it was considered the
more advanced problems in competitive programming (seldom appear in high school level
contests), but the algorithms itself and the problems they aim to solve are fascinating. Here |
want to elaborate on the basic concepts of maximum flow algorithms and its applications.

First, before starting to solve the problem, we have to carefully define the problem itself.
The rigorous definition and proofs may take a while and sometimes obscure, so here is a
simplified version:

Flow network G =(V, E), V denotes the set
of vertices and E denotes the set of edges, is a
directed graph with each edge (1, v) € E hasa
capacity c(u, v). There are two vertices that are
distinguished from others, the source s and
sink 7, and every vertex v € J exist a path in

the flow network that goes s — v — .

A flow between (u, v) € V , denote as f(u, v) should satisfy 0 <f(u, v) <c(u, v). And

Yu €V —{s, t},should satisty) f(v, u) = > f(u, v) , which is called flow conservation,
vey vEV

the sum of flow came in vertex u should equal to the amount that came out.

In order to solve the maximum flow problem, we have to introduce the following notions
(here we introduce the augmenting flow scheme):

Reverse Edges: For every edge (1, v), we add a reverse edge (v, u) with an initial
capacity zero. Every time we add a flow f(u, v), we subtract the capacity of edge (u, v) by
f(u, v) and add the capacity of the reverse edge c(v, u) by f(u, v), so we can infer the amount
of flow that can be cancelled, it is useful when finding augmenting paths.

Cancellation of Flow: With the reverse edges in place, we can regard the cancellation of
the original flow f{u, v) as a flow through the reverse edge (v, u), and of course, the capacity of
the original edge will be added back.

Residual Network: The residual network is the original network plus a active flow,
denote asG ; .

Augmenting Path: A new path of flow from s to ¢ in the residual network (Includes

both original edges and reverse edges). Finding an augmenting path can be done by using
depth-first search of breadth-first search.

Left: An example of a residual network, blue edges are the original edges in the network, and
orange ones are the reverse edges.

Right: An example of augmenting path of the previous residual network, the red lines and
numbers indicates the path and the flow/capacity after augmenting.

In the above example, we can observe the augmenting and cancellation process, if we
cancel the flow 1 — 2 by 3, the flow that used to flow into 2 is redirected to 3 and gets to sink
t eventually. As for the augmenting flow s — 2 replaced the flow that used to flow from
1—-2—-4.

One of the most basic algorithm to solve maximum flow problem is the Ford-Fulkerson
Algorithm, first introduced in 1956. The algorithm is simple:

Ford-Fulkerson Algorithm

While there exists a augmentation path in G ,
Do find augment path /" in G , and augment f — f+/

If we use depth-first search to find augment path, the algorithm has a time complexity of
O(F|E|) (F denotes maximum flow. Because /> 1, there are at most F' augmenting flows , and
finding an augmenting flow takes approximately |E| steps), and if implemented using
breadth-first search then the complexity is O(|V ||E]| 2) (usually called the Edmonds-Karp

Algorithm), below is my implementation in C++.

Ford-Fulkerson Algorithm Using DFS in C++

#include <vector>

#include <algorithm>

#include <cstring>

using namespace std;

const int maxV = 101;

struct edge{int to, cap, rev;};

vector<edge> G[maxV];

bool used[maxV];

int Vv, E, s, t, INF = 2147483647;

void add edge(int u, int v, int cap) {
G[u] .push back((edge){v, cap, G[v].size()}); //original edge
G[v].push back((edge){u, 0, G[u].size()-1}); //reverse edge

}

int dfs(int v, int £f) {

if(v == t) return f; // returns if a path from s to t was found
used[v] = true;
for(int 1 = 0; 1 < int(G[v].size()); ++1i){
edge &e = G[v][i];
if (lused[e.to] && e.cap > 0){ //selects a residual edge
int d = dfs(e.to, min(f, e.cap));//search recursively
if(d > 0){ //if an augment flow was found
e.cap -= d; //subtract the capacity of this edge

G[e.to] [e.rev].cap += d; //then add to reverse edge
return d;

}

return 0;

int max flow () {
int flow = 0;
while (true){ //search until no more paths is found
memset (used, 0, sizeof (used)):;
int £ = dfs (s, INF);

if(f == 0) return flow;
flow += £;
}
}
References:
1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction
to Algorithms.

2. MEHRS EAB— N ERE OS5I 2003 FRKNF LS TS

