
A Survey on Advances in Neural Machine Translation 
 

2016 Fall Digital Speech Processing Final Project 
 

臺灣大學醫學系ㄧ年級 謝德威  
學號 B05401009 

 
Alexander Shieh 

National Taiwan University School of Medicine 
teweishieh@gmail.com 

 
 

Abstract 
 
This survey covers some significant works on the recent advances in neural machine 
translation, a rapidly developing field surpassing conventional statistical machine 
translation results. We start by introducing the state-of-the-art machine translation 
system published by Google research in Oct. 2016. Then, we inspect its details by 
scraping each component of the proposed system and tracing back earlier 
breakthroughs that contributed to these components, which, in the end combined to 
produce amazing results that broaden the capabilities of neural machine translation. 
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Introduction 
 
Machine translation is regarded as one of the most challenged and difficult task in 
natural language processing literature. In statistical machine translation settings, the 
problem is treated as calculating the probabilities of the target language model and 
the translation model of the language pair separately. Furthermore, the translation 
model has to deal with alignment problems and so on. However, in neural machine 
translation (NMT) , it is made possible to use a general, end-to-end model to solve 
this task.  
 
More interestingly, recent breakthroughs in neural machine translation allows a 
single model to translate between different language pairs, instead of building 
separate models for each pair. Then, according to the latest results published by 
Google in Nov. 2016 showed the underlying strength and versatility of such 
approaches to achieve zero-shot learning across different languages using a single 
model, which demonstrates a surprising example of multitask and transfer learning. 
 
We will start by reviewing the latest work done by Google, and trace back to the 
earliest works on modern neural machine translation using recurrent neural networks 
in 2014. Then, we will show in-depth the techniques developed in the following years 
that gained large success in tackling alignment and sentence encoding challenges, 
accompanied by surveying unsolved problems in these works. In the end, we will 
show some research on extensions of machine translation, such as real-time 
translation, and propose some possible future research topics related to neural 
machine translation. 

Sequence to Sequence Learning with Recurrent Neural Networks 
 
First, we will introduce the architecture of Google’s neural machine translation 
system (GNMT), then examine how each component was developed as it is. An 
overview of the model suggest it is constructed by three major components, namely 
the encoder, a stacked 8-layer LSTM network, the decoder network, another stacked 
8-layer LSTM network, and the attention network, a one layer feedforward network 
connecting the two. Their functions and design insights will be illustrated in the 
following sections. 
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Above: The architecture proposed by Google. (Graph from the GNMT paper) 

 
Neural machine translation was largely build upon Recurrent Neural Networks 
(RNNs), which was used as a general model in sequence to sequence learning. One 
important breakthrough in RNN research was the Long Short-Term Memory (LSTM) 
architecture proposed by Hochreiter and Schmidhuber in 1997[1]. LSTM successfully 
solved the problem of exploding and vanishing gradient when training conventional 
networks, thus capable of learning to bridge long intervals.  
 
In 2014, Sutskever et al.[2] published its results of using a 4-layer deep LSTM model 
with 1000 cells in each layer and 1000 dimensional word embeddings to learn 
English to French (Using WMT’14 Dataset) translation. This simple straightforward 
approach achieved a BLEU score of 34.81, surpassing past baseline of 33.30. The 
BLEU (bilingual evaluation understudy) score is a common metrics to measure 
translation quality, and is highly correlated to human judgements. The paper also 
reveals that LSTM learned much better if the given source sentences are reversed 
while the target sentence are not. 

 
Above: The simple approach proposed by Sutskever et al. (Graph from [2]) 
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Meanwhile, Cho et al.[3] from Université de Montréal come up with a similar 
construction that achieved comparable results. In addition, it also proposed a much 
simpler recurrent unit, called Gated Recurrent Unit (GRU). This construction was 
later found to generate comparable results to LSTM with significantly less complexity 
and sometimes faster training time. 
 

 
 

 
 

Left: The RNN encoder / decoder model; Right: Comparison of LSTM and GRU. 
(Graph from [3] and [4]) 
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Bidirectional RNNs and Attention Mechanism  
 
However, these simple approaches have serious limitations on the length of the 
sentence given for translation. More specifically, its performance would peak at 
sentences with length about 20 characters, and then drops as the sentence length 
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extended.[1] Therefore, Cho et al. gave a novel approach that combined the 
encoding technique of Bidirectional RNNs and the Attention Mechanism in 2015. 
 
The Bidirectional RNNs obtained significant results in speech recognition in 2013, 
generating results slightly better than DNN and GMM-HMM baselines.[2] The 
technique was to read the source sentence alongside with its reverse, then 
concatenate them to become the input for the decoder network. With this 
improvement, the decoder network can benefit from a more complete description of 
the whole sentence.[3] 
 
As for the Attention Mechanism, it was used to enhance the encoder and the 
decoder’s ability to align and focus on generating its current output. Implemented by 
giving a weight for each bidirectional state of the sentence, and represent the input 
sentence as a weighted sum of these states. The weight was calculated by a 
feedforward network using the bidirectional state and the last output of the decoder 
as inputs. 
 

 
Above: The graphical summarization of Attention Mechanism with Bidirectional 

Recurrent Neural Network. (Graph from [4]) 
 
This approach also solves the fact that simple representation of the sentence as a 
single vector is counter intuitive to the fundamentals of information theory, that is, a 
longer sentence should carry more information and thus have a longer encoded 
length. Moreover, if the encoder network was replaced by a Convolutional Neural 
Network (CNN), this construction can be used to generate caption for images and 
videos as depicted in Vinyals et al.[5] and Cho et al.[6] later in 2015. 
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Stacked RNN and Residual Connections 
 
Now we head back to Google’s translation system GNMT. Its construction was 
largely the same as the one Cho et al. proposed in the previous section, with 
modifications to its LSTM layers. Each layer’s output will be merged by its previous 
layer’s output to become the input for the next layer. By doing so allows the network 
to be expanded to more layers with feasible training speed and accuracy. 
 

 
 

Above: Detailed construction for the encoder and stacked LSTM with residual 
connections in Google’s system. (Graph from the GNMT paper) 

 
Moreover, similar to previous works, the output produced by the decoder, which was 
in a conditional probability format, was sent to beam search to generate the final 
translated sentence. However, Google’s team introduced a more sophisticated 
scoring based on empirical data for the beam search. 
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Solution to Fixed Vocabulary - Wordpiece Model 
 
One of the most common challenges to natural language processing applications is 
the out of vocabulary (OOV) problem. Most language and encoding models are 
restricted to fixed size vocabulary, and must incorporate methods generalize to more 
words and lower the potential hazard of high error rate on production data. Some 
common solutions includes backoff methods and using a subword unit model. The 
same problem also applies to neural machine translation, which starts by encoding 
one-hot vocabulary vectors and convert it to continuous space word representations 
(similar to the construction of word2vec). 
 
In recent neural machine translation research, Sennrich et al. from University of 
Edinburgh first described a Byte Pair Encoding approach to aggregate frequent 
adjacent character pairs into single n-grams subwords.[1] Similar approaches have 
be used in speech recognition and voice search as well. A more detailed 
implementation was described in Schuster and Nakajima, applied in Japanese and 
Korean voice search.[2] 
 
The algorithm first initialize a language model with an inventory of basic subword 
units (i.e. characters or smallest word fragments) on the training set. Next, the create 
a new unit by combining two subword units and add the unit that maximizes the 
likelihood of the language model to the inventory, until the expected vocabulary size 
is matched. The Wordpiece model used in Google’s system has a subword 
vocabulary size of 32,000.[3] 
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Summarizing Google’s Neural Machine Translation System 
 
Now we can fully understand the underlying techniques of Google’s Neural Machine 
Translation System. The bidirectional encoder, stacked RNN with residual 
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connections, the Attention Mechanism and Wordpiece model contributed 
substantially to the success of high quality translation in production data. 
Furthermore, Google also added human evaluation to their system in addition to 
BLEU scores and achieved an average quality increase of 60% compared to 
conventional phrase based systems in several languages. 
 
It is remarkable that machine translation has gone this far and this close to human 
strength in such a complicated task. We can observe this in the following round-trip 
translation (RTT) result. Though not a good way to evaluate a machine translation 
systems, the RTT demonstrated by Google Translate is pretty accurate.  
 

The English to Chinese to English result of Google Translate 

The survey covers a number of important works in the area of ​​neural machine 
translation, a rapidly evolving field that transcends the latest advances in 
conventional statistical machine translation results. We start by introducing the 
most advanced machine translation system that Google Research released in 
October 2016. We then examined the details of each component of the proposed 
system by crawling it and traced back to earlier breakthroughs that contributed to 
these components, which, in the end, combined to produce astonishing results 
that broadened the ability of neural machine translation. 

The English to Chinese to English to Chinese to English to Chinese result of 
Google Translate 

該調查涵蓋了神經機器翻譯領域的一些重要作品，這是一個快速發展的領域，超越
了傳統統計機器翻譯的最新進展。我們首先介紹Google Research於2016年10月發
布的最先進的機器翻譯系統。然後，我們通過爬行和追溯到對這些組件做出貢獻的
早期突破，審查了提出的系統的每個組件的詳細信息。該組合產生令人驚訝的結果
並且拓寬了神經機器翻譯的能力。 

 

Multitask / Transfer Learning in Multi-lingual Machine Translation 
 
Following the impressive result of GNMT, the Google Brain team continued to 
investigate the prowess of this model. In Nov. 2016 they published another article, 
describing the capability of training one to many, many to one and even many to 
many languages in one single model.[1] Their approach was simply adding a token 
in front of the source sentence indicating the desired target language, without even 
mentioning the source language. Surprisingly, Google’s system can achieve with 
little or no loss in its translation quality (BLEU scores, in this case). Moreover, 
languages with less data available can benefit from multi-lingual training by 
observing more indirect samples. 

 
Alexander Shieh, NTU    7 



 
A Survey on Advances in Neural Machine Translation 

 

 
Another interesting discovery was the model’s flexibility that allows zero-shot 
learning. For example, if trained with English↔Portuguese and English↔Spanish, 
the model can inference reasonable Portuguese→Spanish translations. This is 
called zero-shot because no direct knowledge or explicit data was given to the 
model. Thought the result was not as good as bridged (i.e. Portuguese translate to 
English then Spanish) NMT models, it can be enhanced with incremental training, 
which utilizes significantly less data than models with only one language pair, to 
achieve the same level of quality. 
 
The last important fact discovered was the similarities in the representation of 
sentences in different languages. They extracted the attention vector (the 
representation of a sentence at a certain translation state in the attention network) of 
sentences with similar meanings in different languages. It turns out that these 
sentences tends to form into a cluster, which also is potentially an indication of better 
translation scores. This can also be generalized into the notion that the system itself 
would learn a intermediate language so that it could translate into multiple language 
pairs. 
 

 
Above: Sentence representations visualized by Google. (Graph From [1]) 
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Reflections and Future Developments 
 
In this survey we covered several milestones in NMT and presented the elegant 
system developed by Google. Still, here are some interesting topics closely related 
to NMT but not covered in this survey, including multi-lingual speech recognition[1] 
and real-time translation via reinforcement learning[2]. Overall, the advances in NMT 
provided as various useful tools to apply in not only natural language processing and 
understanding, but also other machine learning applications. 
 
We would also like to address some critical reviews on the research done so far. 
First of all, is it possible to directly use sentence information (such as its vector 
representation similarities) to optimize translation quality if the clustering of attention 
vectors are indeed directly related to translation quality among different languages.  
 
In addition, are there other ways of representing a sentence other than using 
bidirectional neural networks and attention mechanism, and process the entire 
sentence at once. If such method exists, can it be used in tasks such as abstractive 
summarization? On the other hand, if chances are that the system can correct its 
previous translation when given more context, can it optimize its own translation 
iteratively, like a professional human translator would do in practice. Might this create 
then modify approach be helpful in bridging the final gap with human translation 
quality? 
 
More broadly speaking, there are still lots of unsolved mystery related to the 
powerfulness of recurrent neural networks[3]. For example, there are times that 
researchers are surprised by how powerful a model can be and not expecting it to 
work on certain difficult tasks. This leads to the question that can we measure a 
neural network’s capability of learning, or capacity of learning given its architecture 
beforehand? Also, there will be continuing debate on creating a single end-to-end 
model with simple intuitions or develop sophisticated models with detailed 
calculations. 
 
Finally, with the superb computation power, enormous amount of data and ever so 
complicated models, are we just storing all these nonlinear mappings of inputs and 
outputs into more and more parameters, or really on the course of discovering a 
universal learning algorithm. From another point of view, is the supervised learning 
scope too narrow to create such an algorithm, and should we focus more on 
developing an algorithm that can automatically generalize and extend itself? 
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